Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Context.Blazars, which include BL Lacs and flat-spectrum radio quasars, represent the brightest persistent extragalactic sources in the high-energy (HE; 10 MeV–100 GeV) and very-high-energy (VHE;E > 100 GeV)γ-ray sky. Due to their almost featureless optical/UV spectra, it is challenging to measure the redshifts of BL Lacs. As a result, about 50% ofγ-ray BL Lacs lack a firm measurement of this property, which is fundamental for population studies, indirect estimates of the extragalactic background light, and fundamental physics probes (e.g., searches for Lorentz-invariance violation or axion-like particles). Aims.This paper is the third in a series of papers aimed at determining the redshift of a sample of blazars selected as prime targets for future observations with the next generation, ground-based VHEγ-ray astronomy observatory, Cherenkov Telescope Array Observatory (CTAO). The accurate determination of the redshift of these objects is an important aid in source selection and planning of future CTAO observations. Methods.Promising targets were selected following a sample selection obtained with Monte Carlo simulations of CTAO observations. The selected targets were expected to be detectable with CTAO in observations of 30 h or less. We performed deep spectroscopic observations of 41 of these blazars using the Keck II, Lick, SALT, GTC, and ESO/VLT telescopes. We carefully searched for spectral lines in the spectra and whenever features of the host galaxy were detected, we attempted to model the properties of the host galaxy. The magnitudes of the targets at the time of the observations were also compared to their long-term light curves. Results.Spectra from 24 objects display spectral features or a high signal-to-noise ratio (S/N). From these, 12 spectroscopic redshifts were determined, ranging from 0.2223 to 0.7018. Furthermore, 1 tentative redshift (0.6622) and 2 redshift lower limits atz > 0.6185 andz > 0.6347 were obtained. The other 9 BL Lacs showed featureless spectra, despite the high S/N (≥100) observations. Our comparisons with long-term optical light curves tentatively suggest that redshift measurements are more straightforward during an optical low state of the active galactic nucleus. Overall, we have determined 37 redshifts and 6 spectroscopic lower limits as part of our programme thus far.more » « less
- 
            Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1∘and around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin.more » « lessFree, publicly-accessible full text available May 15, 2026
- 
            Abstract Assuming Galactic cosmic rays originate in supernovae and the winds of massive stars, starburst galaxies should produce very-high-energy (VHE;E > 100 GeV) gamma-ray emission via the interaction of their copious quantities of cosmic rays with the large reservoirs of dense gas within the galaxies. Such VHE emission was detected by VERITAS from the starburst galaxy M82 in 2008–09. An extensive, multiyear campaign followed these initial observations, yielding a total of 254 hr of good-quality VERITAS data on M82. Leveraging modern analysis techniques and the larger exposure, these VERITAS data show a more statistically significant VHE signal (∼6.5 standard deviations,σ). The corresponding photon spectrum is well fit by a power law (Γ = 2.3 ± 0.3stat ± 0.2sys), and the observed integral flux isF(>450 GeV) = (3.2 ± 0.6stat ± 0.6sys) × 10−13cm−2s−1, or ∼0.4% of the Crab Nebula flux above the same energy threshold. The improved VERITAS measurements, when combined with various multiwavelength data, enable modeling of the underlying emission and transport processes. A purely leptonic scenario is found to be a poor representation of the gamma-ray spectral energy distribution (SED). A lepto-hadronic scenario with cosmic rays following a power-law spectrum in momentum (indexs ≃ 2.25) and with significant bremsstrahlung below 1 GeV provides a good match to the observed SED. The synchrotron emission from the secondary electrons indicates that efficient nonradiative losses of cosmic-ray electrons may be related to advective escape from the starburst core.more » « less
- 
            Abstract In 2017 February, the blazar OJ 287 underwent a period of intense multiwavelength activity. It reached a new historic peak in the soft X-ray (0.3–10 keV) band, as measured by the Swift X-ray Telescope. This event coincides with a very-high-energy (VHE)γ-ray outburst that led VERITAS to detect emission above 100 GeV, with a detection significance of 10σ(from 2016 December 9 to 2017 March 31). The time-averaged VHEγ-ray spectrum was consistent with a soft power law (Γ = −3.81 ± 0.26) and an integral flux corresponding to ∼2.4% that of the Crab Nebula above the same energy. Contemporaneous data from multiple instruments across the electromagnetic spectrum reveal a complex flaring behavior, primarily in the soft X-ray and VHE bands. To investigate the possible origin of such an event, our study focuses on three distinct activity states: before, during, and after the 2017 February peak. The spectral energy distributions during these periods suggest the presence of at least two nonthermal emission zones, with the more compact one responsible for the observed flare. Broadband modeling results and observations of a new radio knot in the jet of OJ 287 in 2017 are consistent with a flare originating from a strong recollimation shock outside the radio core.more » « less
- 
            Abstract Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲ M χ ≲ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; M χ ≳ 100 TeV) has been suggested as an underexplored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS γ -ray observatory. With 216 hr of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ -ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle.more » « less
- 
            Abstract This paper investigates the origin of theγ-ray emission from MGRO J1908+06 in the GeV–TeV energy band. By analyzing the data collected by the Fermi Large Area Telescope, the Very Energetic Radiation Imaging Telescope Array System, and High Altitude Water Cherenkov, with the addition of spectral data previously reported by LHAASO, a multiwavelength study of the morphological and spectral features of MGRO J1908+06 provides insight into the origin of theγ-ray emission. The mechanism behind the bright TeV emission is studied by constraining the magnetic field strength, the source age, and the distance through detailed broadband modeling. Both spectral shape and energy-dependent morphology support the scenario that inverse Compton emission of an evolved pulsar wind nebula associated with PSR J1907+0602 is responsible for the MGRO J1908+06γ-ray emission with a best-fit true age ofT= 22 ± 9 kyr and a magnetic field ofB= 5.4 ± 0.8μG, assuming the distance to the pulsardPSR= 3.2 kpc.more » « less
- 
            Abstract While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the multiwavelength target-of-opportunity observations of the blazar B3 2247+381, taken in response to an IceCube multiplet alert for a cluster of muon neutrino events compatible with the source location between 2022 May 20 and 2022 November 10. B3 2247+381 was not detected with VERITAS during this time period. The source was found to be in a low-flux state in the optical, ultraviolet, and gamma-ray bands for the time interval corresponding to the neutrino event, but was detected in the hard X-ray band with NuSTAR during this period. We find the multiwavelength spectral energy distribution is described well using a simple one-zone leptonic synchrotron self-Compton radiation model. Moreover, assuming the neutrinos originate from hadronic processes within the jet, the neutrino flux would be accompanied by a photon flux from the cascade emission, and the integrated photon flux required in such a case would significantly exceed the total multiwavelength fluxes and the VERITAS upper limits presented here. The lack of flaring activity observed with VERITAS, combined with the low multiwavelength flux levels, as well as the significance of the neutrino excess being at a 3σlevel (uncorrected for trials), makes B3 2247+381 an unlikely source of the IceCube multiplet. We conclude that the neutrino excess is likely a background fluctuation.more » « lessFree, publicly-accessible full text available March 20, 2026
- 
            Abstract The ground-based gamma-ray observatory Very Energetic Radiation Imaging Telescope Array System (VERITAS, https://veritas.sao.arizona.edu/ ) is sensitive to photons of astrophysical origin with energies in the range between ≈85 GeV and ≈30 TeV. The instrument consists of four 12 m diameter imaging Cherenkov telescopes operating at the Fred Lawrence Whipple Observatory in southern Arizona. VERITAS started four-telescope operations in 2007 and collects about 1100 hr of good-weather data per year. The VERITAS collaboration has published over 100 journal articles since 2008 reporting on gamma-ray observations of a large variety of objects: Galactic sources like supernova remnants, pulsar wind nebulae, and binary systems; extragalactic sources like star-forming galaxies, dwarf-spheroidal galaxies, and highly variable active galactic nuclei. This note presents VTSCat: the catalog of high-level data products from all VERITAS publications.more » « less
- 
            Abstract Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar’s spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
